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ABSTRACT

Consider the nonlinear neutral difference equation
Alzy ~ prg(@n—k)] +guh(zn_1) =0, neEN.

We establish a linearized oscillation theorem which is a discrete result of
the open problem by Gyori and Ladas.

1. Introduction

The linearized oscillation theory for the first order nonlinear neutral differential
equation

M 2 (1) - p(D)g(alt ~ )] + a(O)A(a(t ~ o)) = 0

has been established by Ladas and others [4, 7]. As we have seen in [4, 7], it
seems that the following assumption,

limsupp(t) = po € (0,1), liminfp(t) =p € (0,1),
—x0

t—o0

is always assumed to hold. Therefore, Gyori and Ladas proposed the following
question in [4, Problem 6.12.7]: Obtain linearized oscillation results of Eq. (1)

* This work is partially supported by NNSF (NO: 19671027) of China.
Received February 1, 1998

149



150 Z.ZHOU AND J. S. YU Isr. J. Math.

when the coefficient p(t) < 0 for t > ¢g or p(t) > 1 for ¢t > ty. The linearized
oscillation results of Eq. (1) have been obtained by Chen and Yu in [2] for the
case where limsup,_, .. p(t) = po € (1,00), and by Yu and Wang in {8] for the
case where lim;, 5 p(t) = po € (—00,—1). But there are no results for the case
where lim;_, o, p(t) = 1, therefore we establish a discrete result for this case.

Let Z denote the set of all integers. For given a,b € Z with a < b, define
N(a) ={a,a+1,...}, N = N(0) and N(a,b) = {a,a +1,...,b}.

Consider the difference equation

(2) A[In - png($7L—k)] + th($n—l) =0, né€N,

where A denotes the forward difference operator defined by Az, = z,11 — Zp,
{pn} and {g,} are sequences of nonnegative real numbers,

(3) kileN, k>1, gheClR R

Moreover, we assume that

) Jim pp =1, lim g, =q € (0,00),
('5) ug(U) > 0, for u 75 O, Iim M — 17 lim g(u) — 17
u—=0 U Juj—oo U
h
(6) Uh(u) > 0’ fOI' U 71__ 05 hm _(U__) - 1, hm —h(u) = 1
u=0 1y lulsoo U

We obtain the following theorem which is a discrete result of Eq. (1) for the case
where lim;_, o p(t) = 1.

THEOREM 1: If (3), (4), (5) and (6) hold, then every solution of Eq. (2) oscillates.

As an application of Theorem 1, we consider the following difference equation:

(7) A[xn - png(mn—l)] + qnh($n~2) = 0;
where
B n?+1 _22n® +4n+1)(n—1)
Py ) T T et Dint2)
T z + x?
g(z) = (1+—+$), h(z) = .

1+ z2
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It is easy to see that all the assumptions of Theorem 1 are satisfied with ¢ = 4.
Therefore, every solution of Eq. (7) oscillates. In fact, z, = (—1)"*1/(n +1) is
such a solution.

For the linearized oscillations of difference equations, we refer to [3, 6, 9.

Set m = max{k,{}. By a solution of Eq. (2), we mean a sequence {z,} of
real numbers which is defined for all n € N(ng — m) and satisfies Eq. (2) for
n € N(ng), for some ng € N. A solution {z,} is said to be oscillatory if
the terms x, of the sequence are not eventually positive or eventually negative.
Otherwise, the solution is called nonoscillatory. For the general background
on difference equations, one can refer to {1, 5].

2. Proof of Theorem 1

Before proving the theorem, we establish two lemmas which are useful in the
proof of Theorem 1.

Consider the linear difference equation

(8) A&y —pTp_ k) +qTn =0, neN,
where
(9) kleN, k>1, p,qe€(0,00).

LEMMA 1: Assume (9) holds and either

(10) 0<p<1, ¢>(1-p""(1-p),
or
(11) p>1, ¢> (/% —1)(p-1)p~

Then every solution of Eq. (8) oscillates.

Proof: 1t is well known [4] that every solution of Eq. (8) oscillates if and only if
the characteristic equation of Eq. (8)

(12) A=D1 -pA ) +gr'=0

has no real roots. It is easy to see, by a simple computation, if (10) or (11) holds;
then (12) has no real roots. This completes the proof of Lemma 1. |

The following lemma can be found in [9, Lemma 2.1].
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LEMMA 2: Assume that k,l € N, k > 1, {p,}, {¢.} are nonnegative, and there
is a positive integer k* such that

Per+ik <1, i€ N.
If the difference inequality
A(Yn = Pryn—k) + @nyn-1 <0, n€N
has an eventually positive solution, then the corresponding difference equation
Az, — PnZn—k) + GnZny =0, NEN

has an eventually positive solution.

Proof of Theorem 1: Assume, for the sake of contradiction, that Eq. (2) has a
nonoscillatory solution {z,}. We only consider the case where {z,} is eventually
positive. The case where {z,} is eventually negative is similar and the proof will
be omitted. Assume z,, > 0 for n € N(ng — m); let

(13) 2 = Tp — png(mn—k)'
Then
(14) Dzp = —gph(zn_t) <0, n € N(ng),

which implies that {2, }ne N(no) 18 nonincreasing. There are two possible cases to
consider.

CasE 1: lim, o 2, = 2" € R.

In this case, we know from (14) that

lim g,h(zn—;) = lim (— A 2,) =0.

n—oo n—o0

Since limy—y00 gn = g > 0, we see that lim,_,c h(Trn—;) = 0. In view of (6), we

are led to

(15) lim z, =0 and lim 2z,=0.
n—00 00

Define

P, = png(xn—k), Qn - (Inh(xn—l);

Tn—k Tn—i
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then
' h
(16) lim P, = lim p, - lim g(_u_) =1, lim Q, = lim ¢, - lim M =q>0,
n—o0 n—00 u—0 U n—o0 n—00 u—0 U
and Eq. (2) reduces to
(17) A(.’L‘n - ann—k) 4+ Qntpn_ =0.

By (13), (17) can be rewritten as

(18) Az — Pn_lQQ—" A znp + Qnznet = 0.
n—k

Choosing p € (0,1), g0 = q/2 such that
(19) (1 - p)(1 = p*) <o,
then there exists n* € N(np) such that

Qn
Qn—k

Since z, > 0, Az, <0 (n € N(ngp)), (18) yields

(20) Py

>p, Qn>q forne N(n*—m).

(21) ANz —pD 2y g+ qozn_1 <0, neN(n").

In view of Lemma 2, the corresponding equation

(22) Ny — DD 2k + @zn-1 =0

has an eventually positive sclution, while from (19} and Lemma 1 we see that
every solution of Eq. (22) oscillates. This is a contradiction.

CASE 2: limp.yo0 2 = —00.

In this case, we have

(23) nll)rx;o Ty = 00.

In fact, if (23) does not hold, then there is a sequence of integers {n;} such that

lim n; =00, limz,, =z" €R.
i—+00 i—00

Thus

Zni+k = Tn+k — pni+kg(x'ni)? hglnf Znitk > —g9(z*);
i—00
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this is impossible. So (23) holds.

Let
P = png(xn—k)’ Q= ‘Znh(ajn*l);
Tn—k Tn—1
then
h
(24) lim P’ = lim p,- lim 9 1 lim Q: = lim g, - lim hw) _,
n—oo n—ro0 u—00 U n—ro0 n—oo U—F00 U
Choose pg € (1,00}, qo = q/2 such that
- k
(25) (" = D(po = p* < ao.
In view of (24), there is m* € N(ng) such that
(26) Zmr <0, Pr<py and Q; >qo forne& N(m").
By the definition of P}, Q7 we see that
A(mn — P;Z!Jn,k) + Q;In_l =0.
Summing both sides of this equation from m* to n — 1, we get
n—1
(27) Ty — P;:L'n—k — Zm~ + Z Q:wi—l = 0, n e N(m* =+ 1)
=m*
From (26), this implies
n—1
(28) Ty — POLn_k — Zm* + Qo Z i1 <0, neNim +1).
t=m*
So
n+k—1
(29) Tn 2> Ttk — Zm~ + o Z Zi-1)/po, meN(mM* —k+1).
i=m*

Define the set of positive sequences
(30) S={a={an}: —2m/po < an <zn, n€NmM" —k+1)}

and the mapping T on S as follows: For every a = {a,} € S, b = Ta = {b,}
where
an, neNm —k+1,m*—-k+1),
n+k—1
(@nik — Zm* + Qo Z a;_1)/po, neENm —k+1+1).

i=m*
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It is clear that T is monotone in the sense that if a,b € S, a < b (that is a, < b,
forn € N(m* —k + 1)), then Ta < Tb. Let = {Tn}nen(m*—k+1); (29) implies
Tzr < z,s0 a € S implies Ta < Tz < z. Obviously, (Ta), > —z;,-/pp. Therefore
T:5— 5.

We now define the following sequence on S:

y© =z and y) = Ty(s_l) fors=1,2,....
By induction, we know that the sequence {y(s)} of elements of S satisfies
—Zme Do < YD <) < g forne N(m* —k+1).

Hence
Yn = li}rn ¥y ne Nm*—k+1)

exists and ¥ = {Yn fneN(m=—k+1) € S. Also Ty = y, that is

n+k—1
Un = Untk — 2m= + 00 P Yi-)/Po, nEN(mM*—k+1),

i=m*

which is to say that {y,} is a positive solution of the difference equation
(32) A(:En - pOzn—k) +qZn1=0, n€ N(m* + 1)

However, from (25) and Lemma 1, we see that every solution of Eq. (32) oscillates;
this is a contradiction.

The proof of Theorem 1 is complete by combining Case 1 and Case 2. |
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